Introdgq.mn to Sajety Systems
in Reseanch AcC elerators

L TSP L |
. June, 2004 N 4

F

/ et o .

Outline

< Overview of software considerations for use 1n
safety applications

<+ Objective

< Introduce some of the concerns in using programmable
devices and some of the methods used to address them.

© K Mahoney/S. Prior USPAS
D200 June, 2004

< Nancy Leveson will argue that “software” cannot
fail, only hardware. Software 1s an abstract
concept executed by physical hardware.

© K Mahoney/S. Prior USPAS
D200 June, 2004

0’0

A stress-strength model can be used.

Instead of physical stress on a component, software 1s stressed by
demands placed on the constraints within the context of the system.

These constrains can be:
< physical, e.g. hardware failure,...

<+ logical, e.g. out of bounds data,...

< temporal, e.g. old data, mis-synchronized functions,...

It 1s a matter of how well the constraints are defined and how well
the system can handle excursions beyond the constraints.

© K Mahoney/S. Prior USPAS
D200 June, 2004

Stress Strain

Safety Margins and Safety Factors

Frobability
of

OCCUIMEnce

wpecied . Stress
failure sirengih

{a) Probability density funclion of failure for two parns
with same expected failure strength.
j— Salety factor —|
Probabil
o ity

ocourrance

Expected [Expected
load .
Margin
of safety
(b} A relatively safa case.

Probability ke— Salety factor —|
of T e

oCCurrence ‘S TN

Emlmad E:qmlad Slress
load strength

(c) A dangerous overlap bul the safety factor is the same as in (b)

© K Mahoney/S. Prior USPAS
D200 June, 2004

Safety Margin

Failure Point Stress

70 80 90
2 o safety margin

© K Mahoney/S. Prior USPAS
D200 June, 2004

Margin

ne
000000000

0 10 20 30 40 50 60 70 80 90 100

© K Mahoney/S. Prior USPAS
D200 June, 2004

Errors introduced in the
behavioral phase will propagate
through to any type of system
implementation.

This is the source of the
majority of functional errors in a
W, system.

Logic
Requirements

Redundant
Implementation

Redundant
Implementation

Software
Implementation

Hardware
Implementation

Software
Implementation

Hardware
Implementation

© K Mahoney/S. Prior USPAS
D200 June, 2004

Requirements

The most important document 1n safety systems is the
requirements document.

Requirements should include
< Context
< Scope and intended use
< Constraints
< Assumptions
< Desired behavior
< Timing requirements
< Exception handling
< Verification/Validation requirements
< Definition of inputs and expected outputs

© K Mahoney/S. Prior USPAS
D200 June, 2004

<+ Languages
+IEC61131-3 Defines PLC programming Languages
< Applications

< Software application development 1s left to “Good
Practice”

<+ A good start 1s in IEC 61508 and 61511

<+ IEC880 (Software for Computers in the Safety Systems
of Nuclear Power Stations) 1s a good reference

© K Mahoney/S. Prior USPAS
D200 June, 2004

7

Programming Languages

» Three Categories

< Fixed Program Language
< Application is unalterable
< Ex. Smart Transmitter
< Limited Variability Language

<+ Well defined functions may be programmed within a structured
framework

< Ex. Ladder Logic, Instruction List, Structured Text
< Full Variability Language
< General purpose programming language
<+ Ex. ADA, C, C++

© K Mahoney/S. Prior USPAS
D200 June, 2004

Safety Software Design

Really, it is high QA design.
Apply standards and good practice that reflect lessons learned from past
accidents. Includes things like checklists.

Make use of hazard analysis techniques to help avoid introduction of
systematic errors.

© K Mahoney/S. Prior USPAS
D200 June, 2004

Branches

<+ Every
decision
branch in a
logical
system
iIncreases the
complexity of g
the system
exponentially

200

-

USPAS
June, 2004

Software Analysis Techniques

¢ Software FMEA

¢ HAZOP

—Hazard and Operability analysis

—Qualitative

—Carried out on design, not a FMEA
¢ Fault/Event Trees

—Quantitative

—Only follows defined faults/events
¢ Formal Methods

—Rigorous but unwieldy

© K Mahoney/S. Prior USPAS
D200 June, 2004

IEC 61508 Part 3 Software

< Defines requirements for software practices based
on target SIL level.

< Includes appendices with recommended practice.

< Practice may be:

<+ HR Highly Recommended
*R Recommended

% - mute/no recommendation
<+ NR Not Recommended

© K Mahoney/S. Prior USPAS
D200 June, 2004

Recommendations from IEC
61508 Part 3-Software

- Technique/Measure Ref SIL1
1 Use of coding standard HR
2 No dynamic objects R

3a No dynamic variables -
3b Online checking of the installation -
of dynamic variables

4 Limited use of interrupts R

5 Limited use of pointers ——-
6 Limited use of recursion ——-
7 No unconditional jumps in programs R

in higher level languages

SIL2
HR
HR
R
R

A A0 4

SIL3
HR
HR
HR
HR

HR
HR
HR
HR

SIL4
HR
HR
HR
HR

HR
HR
HR
HR

Table B.1 — Design and coding standards

© K Mahoney/S. Prior USPAS
D200 June, 2004

Recommendations from IEC 61508 Part 3-Software

Technique/Measure Ref SIL1

1 Software module size limit

2 Information hiding/encapsulation
3 Parameter number limit

4 One entry/one exit point in
subroutines and functions

5 Fully defined interface

© K Mabhoney/S. Prior
2002-2004

HR

From Table B.9 — Modular approach

USPAS
June, 2004

SIL2
HR
HR
HR

HR

SIL3
HR
HR
HR

HR

SIL4
HR
HR
HR

HR

Hazard Miti

ation from Software Perspective

S avanon - 150
Do

Safe Design Precedence

Substitution

Simplification

Decoupling

Elimination of human errors

Reduction of hazardous materials or conditions Decreasing cost

HAZARD REDUCTION Increasing effectiveness

Design for controllability
Bammers

Lockins, Lockouls, Interlocks
Failure Minimization

Safety Factors and Margins

Redundancy

HAZARD CONTROL

Reducing exposure
Isolation and containment
Protection systems and fail-safe design

DAMAGE REDUCTION

N. Leveson

© K Mahoney/S. Prior USPAS
2002-2004

June, 2004

Software Checking

A Hierarchy of Software Checking

3l
not detected

* Observe system axtarnally to provide indapandant view
* |Jse additional hardware or completely separate hardware.
* Dftan absarve both controlled system and contraller,

* Indapandent monitoring by process separate from thal baing checked.
* May check:
dala being passed betweaen modules

consistency of global data structures
expected timing of modules or procassas

e o e e e o e o o o S B N WM MmO mEEEEEEETTIIIESEELEE s

Code-Level Checks

not detected

Hardware Checks

N. Leveson

© K Mabhoney/S. Prior
2002-2004

* Can detect coding errors and implementalion errors,

* Use assertions: slatements (boolean exprassions on system state)
about expected state of module at diffarent points in execution or
about expected value of parametars passed to module,

e.g. range checks, stale checks, reasonablaness checks

* Used to detect hardware failures and individual instruction ermors.
&.g.. mamory protection viclation, divide by zero

* Checksums

& Often buill into hardware or checks included in operating system.

USPAS
June, 2004

Self-Checking Software (2)

Other Errors
Detected

Spec Read Chks Spec Read Chks
KNOWN NEWLY FOUND ADDED

© K Mahoney/S. Prior USPAS
D200 June, 2004

State Machine Design

State or state machine based design
Each state must be complete

Each state and transition in-to and out-of must be
deterministic, e.g. fail safe states.

Define “safe” states and “dangerous” states
Error handling for each condition/state/transition

Restricted Controlled
Search
Access Access

© K Mahoney/S. Prior USPAS
D200 June, 2004

McCabe Complexity

< e is number of edges
% nis number of states

Paths =e—n+2

[f-Then-Else
While-Do

© K Mahoney/S. Prior USPAS
2002-2004 June, 2004

